Censored count data regression with missing censoring information
نویسندگان
چکیده
We investigate estimation in Poisson regression model when the count response is right-censored and censoring indicators are missing at random. propose several estimators based on calibration, multiple imputation augmented inverse probability weighting methods. Under appropriate regularity conditions, we prove consistency of our derive their asymptotic distributions. Simulation experiments carried out to finite sample behaviour relative performance proposed estimates. These estimates illustrated a real data set.
منابع مشابه
Hazard estimation from right censored data with missing censoring indicators
The kernel smoothed Nelson–Aalen estimator has been well investigated, but is unsuitable when some of the censoring indicators are missing. A representation introduced by Dikta, however, facilitates hazard estimation when there are missing censoring indicators. In this article, we investigate (i) a kernel smoothed semiparametric hazard estimator and (ii) a kernel smoothed “pre-smoothed” Nelson ...
متن کاملStatistical inference for right-censored data with nonignorable missing censoring indicators
We consider the statistical inference for right-censored data when censoring indicators are missing but nonignorable, and propose an adjusted imputation product-limit estimator. The proposed estimator is shown to be consistent and converges to a Gaussian process. Furthermore, we develop an empirical process-based testing method to check the MAR (missing at random) mechanism, and establish asymp...
متن کاملNonlinear Regression With Censored Data
Suppose the random vector (X,Y ) satisfies the regression model Y = m(X) + σ(X)ε, where m(·) = E(Y |·) belongs to some parametric class {mθ(·) : θ ∈ Θ} of regression functions, σ2(·) = Var(Y |·) is unknown, and ε is independent of X. The response Y is subject to random right censoring, and the covariate X is completely observed. A new estimation procedure for the true, unknown parameter vector ...
متن کاملAdditive hazards regression with censoring indicators missing at random.
In this article, the authors consider a semiparametric additive hazards regression model for right-censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non-missi...
متن کاملCensored Quantile Regression with Auxiliary Information
In quantile regression of survival data, the estimation of the regression coefficients for extreme quantiles can be affected by severe censoring. Measurement error in covariates also leads to bias and loss in efficiency of estimators. In this seminar, we discuss the methodologies that effectively use the auxiliary information to improve the efficiency of censored quantile regression estimators....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2021
ISSN: ['1935-7524']
DOI: https://doi.org/10.1214/21-ejs1897